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ABSTRACT

Terrain generations can be done using Generative Adversarial Net-
works as recent works have shown that GAN can generate various
kinds of objects, including terrains. Terrain generations would re-
quire high resolution for terrain’s topological data. As NVidia’s
Progressive Growing GAN has proven to generate object’s images
in high resolutions, we chose to generate terrains using Progressive
Growing GAN. The GAN doesn’t only generate colors of surface
of the earth, but it also generates the heights together. The training
process provides how to utilize a Convolutional Neural Network to
achieve high relevance between the colors and heights.

Index Terms: Human-centered computing— Visualization—
Visualization application domains—Geographic visualization; Com-
puting Methodologies—Computer graphics—Shape modeling—;
Computing Methodologies—Machine learning—Machine learning
approaches—Neural networks

1 INTRODUCTION

The procedural terrain generation is a popular way of generating
terrains; the diamond square [2] method and Perline noise [10] are
two well known methods. And recently, machine learning methods
were introduced, which uses generative adversarial networks [3]. In
particular, C. Beckham and C. Pal tried to use DCGAN [11] and
pix2pix GAN [5] to generate terrains [1]. But two networks were
trained separately and seems to have some mismatching problem
between surface color and its heights.

The purpose of this study is to generate terrains using GAN that
can combine the training of surface colors, topological data, and hy-
drology data, which provides a stable training process. Progressive
Growing Of GAN [6] exactly satisfies the purpose.

2 PREvious WORKS

Progressive Growing GAN uses many distinctive features that make
itself different from other GANs.

21 GAN

Generative adversarial networks have two networks which consist
of a discriminator D and a generator G. D tries to discriminate better
and G tries to fool D. This problem can be formulated as a minimax
game [3]:

minmaxV (D, G) = Ex.p,,,, (x) l0g D)] +Eq () [log (1= D(G(2)))]
1)

Progressive Growing GAN uses only one critic, meaning D and G
alternates on a per-minibatch basis [6]
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2.2 Loss

As WGAN-GP [4] is genrally more stable loss function [6], WGAN-
GP is used in this study, which is formulated as below:

L= E [D(%)]
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where E [D(%)]— E [D(x)] is for critic loss and
i~Py x~P

QLAIEP [(||VsD(£)||2 — 1)? is for the gradient-penalty.
E~IPy

2.3 Pixelwise normalization

Progressive Growing GAN uses Pixelwise normalization [6] to pre-
vent abnormal changes of magnitudes in generator and discriminator,
which is a variant of local responsive normalization [9].

3

where N is the number of features, a is original feature vector, b is
normalized vector for position (X,y), and € = 10°8 [6].

2.4 Equalized learning rate

We use ADAM [7] to optimize Progressive Growing GAN. The
GAN initializes the weights w with N(0, 1) an W; = w;/c where w;
are weights and c is the per-layer normalization constant, which
ensures that the dynamic ranges of weights becomes same [6], i.e.
same learning rate.

ADAM’s hyperparameters are & = 0.001, 8 =0, f = 0.99, and
£ =108 with no learning rate decay [6].

2.5 Minibatch standard deviation

A terrain can have many features which would look unnatural if the
features get omitted. GANs often use a subset of theses features [6],
but minibatch discrimination [8] can help to increase the variation
captured from the training batch. Progressive Growing GAN has
simplified this without learnable parameters nor hyperparameters [6]
which is formulated as below:

E[(X —u)?|+e¢ 4)

This is a standard deviation of features which is used to be concate-
nated to all spatial locations over the minibatch [6] as an additional
feature map.

2.6 Progressively growing network layers

Progressive Growing GAN’s key feature is how the network grows
layers to stabilize the training. From low resolution to high resolu-
tion, the GAN incrementally trains layers to work well. In each step
of adding a layer, the GAN doubles the resolution and increase o
linearly that blends the results of two connected layers [6].

For blending of two layers, downsampling is required for the dis-
criminator and upsampling is required for the generator [6].



3 TRAINING

We used earth’s surface image and topological data from NASA’s
Visible Earth, which looks like below:

Then we combined the color channels with topology channel
for the input of the image sampler. And then, our image sampler
randomly cropped above input with more cropping probability on the
United States. The trainer samples 30k random crops for training.

3.1 Progressively growing layers

The progressive improvements of growing resolution can be
visualized as below:

From left to right, we can see how fade-in is affecting the training
progress. From top to bottom, we can see how resolution is growing
with additional layers.

4 RESULT

The GAN can generate various types of terrain with the combination
of various features as below:

The transition from snowed terrain to other types of terrain in
the Output, , is natural as we would see from the northern part of
America. Afld, we can see dirts and grass in Output3,1 , the mountains
and oceans in Outputy |, canyons in Output, |, etc.

5 CONCLUSION

The GAN was trained as intended, but there’s a need for improve-
ments for both visualization and the network.

6 FURTHERMORE

Since we have the surface type as colors, we need to increase the
surface detail of the terrains that the GAN generated and find a way
to train hydrological data together for applying surface erosion. As
the network uses a lot of RAMs, we can also consider serializing the
network to distribute the computation.
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